首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17574篇
  免费   1563篇
  国内免费   907篇
化学   498篇
晶体学   19篇
力学   2575篇
综合类   132篇
数学   13437篇
物理学   3383篇
  2024年   27篇
  2023年   189篇
  2022年   146篇
  2021年   268篇
  2020年   492篇
  2019年   480篇
  2018年   511篇
  2017年   493篇
  2016年   497篇
  2015年   443篇
  2014年   766篇
  2013年   1920篇
  2012年   706篇
  2011年   1032篇
  2010年   814篇
  2009年   1149篇
  2008年   1125篇
  2007年   1066篇
  2006年   981篇
  2005年   779篇
  2004年   696篇
  2003年   684篇
  2002年   657篇
  2001年   504篇
  2000年   508篇
  1999年   424篇
  1998年   375篇
  1997年   349篇
  1996年   262篇
  1995年   202篇
  1994年   193篇
  1993年   150篇
  1992年   112篇
  1991年   103篇
  1990年   95篇
  1989年   66篇
  1988年   57篇
  1987年   55篇
  1986年   39篇
  1985年   66篇
  1984年   104篇
  1983年   51篇
  1982年   71篇
  1981年   64篇
  1980年   59篇
  1979年   58篇
  1978年   54篇
  1977年   33篇
  1976年   27篇
  1974年   7篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
21.
The characteristics of heat transfer in the three-dimensional stagnationpoint flow past a stretching/shrinking surface of the Al_2O_3-Cu/H_2O hybrid nanofluid with anisotropic slip are investigated. The partial differential equations are converted into a system of ordinary differential equations by valid similarity transformations. The simplified mathematical model is solved computationally by the bvp4c approach in the MATLAB operating system. This solving method is capable of generating more than one solutions when suitable initial guesses are proposed. The results are proven to have dual solutions, which consequently lead to the application of a stability analysis that verifies the achievability of the first solution. The findings reveal infinite values of the dual solutions at several measured parameters causing the non-appearance of the turning points and the critical values. The skin friction increases with the addition of nanoparticles, while the escalation of the anisotropic slip effect causes a reduction in the heat transfer rate.  相似文献   
22.
We introduce a new flexible mesh adaptation approach to efficiently compute a quantity of interest by the finite element method. Efficiently, we mean that the method provides an evaluation of that quantity up to a predetermined accuracy at a lower computational cost than other classical methods. The central pillar of the method is our scalar error estimator based on sensitivities of the quantity of interest to the residuals. These sensitivities result from the computation of a continuous adjoint problem. The mesh adaptation strategy can drive anisotropic mesh adaptation from a general scalar error contribution of each element. The full potential of our error estimator is then reached. The proposed method is validated by evaluating the lift, the drag, and the hydraulic losses on a 2D benchmark case: the flow around a cylinder at a Reynolds number of 20.  相似文献   
23.
In this article, we have developed an overlapping Schwarz method for a weakly coupled system of convection-diffusion equations. The method splits the original domain into two overlapping subdomains. A hybrid difference scheme is proposed in which on the boundary layer region, we use the central finite difference scheme on a uniform mesh, whereas on the nonlayer region, we use the mid-point difference scheme on a uniform mesh. It is shown that the numerical approximations converge in the maximum norm to the exact solution. We have proved that, when appropriate subdomains are used, the method produces almost second-order convergence. Furthermore, it is shown that two iterations are sufficient to achieve the expected accuracy. Numerical examples are presented to support the theoretical results. The main advantage of this method used with the proposed scheme is that it reduces iteration counts very much and easily identifies in which iteration the Schwarz iterate terminates.  相似文献   
24.
Phase-resolved information is necessary for many coastal wave problems, for example, for the wave conditions in the vicinity of harbor structures. Two-dimensional (2D) depth-averaging shallow water models are commonly used to obtain a phase-resolved solution near the coast. These models are in general more computationally effective compared with computational fluid dynamics software and will be even more capable if equipped with a parallelized code. In the current article, a 2D wave model solving the depth-averaged continuity equation and the Euler equations is implemented in the open-source hydrodynamic code REEF3D. The model is based on a nonhydrostatic extension and a quadratic vertical pressure profile assumption, which provides a better approximation of the frequency dispersion. It is the first model of its kind to employ high-order discretization schemes and to be fully parallelized following the domain decomposition strategy. Wave generation and absorption are achieved with a relaxation method. The simulations of nonlinear long wave propagations and transformations over nonconstant bathymetries are presented. The results are compared with benchmark wave propagation cases. A large-scale wave propagation simulation over realistic irregular topography is shown to demonstrate the model's capability of solving operational large-scale problems.  相似文献   
25.
26.
27.
We analyse convergence of a micro–macro acceleration method for the simulation of stochastic differential equations with time-scale separation. The method alternates short bursts of path simulations with the extrapolation of macroscopic state variables forward in time. After extrapolation, a new microscopic state is constructed, consistent with the extrapolated macroscopic state, that minimises the perturbation caused by the extrapolation in a relative entropy sense. We study local errors and numerical stability of the method to prove its convergence to the full microscopic dynamics when the extrapolation time step tends to zero and the number of macroscopic state variables tends to infinity.  相似文献   
28.
This paper investigates the unsteady stagnation-point flow and heat transfer over a moving plate with mass transfer,which is also an exact solution to the unsteady Navier-Stokes(NS)equations.The boundary layer energy equation is solved with the closed form solutions for prescribed wall temperature and prescribed wall heat flux conditions.The wall temperature and heat flux have power dependence on both time and spatial distance.The solution domain,the velocity distribution,the flow field,and the temperature distribution in the fluids are studied for different controlling parameters.These parameters include the Prandtl number,the mass transfer parameter at the wall,the wall moving parameter,the time power index,and the spatial power index.It is found that two solution branches exist for certain combinations of the controlling parameters for the flow and heat transfer problems.The heat transfer solutions are given by the confluent hypergeometric function of the first kind,which can be simplified into the incomplete gamma functions for special conditions.The wall heat flux and temperature profiles show very complicated variation behaviors.The wall heat flux can have multiple poles under certain given controlling parameters,and the temperature can have significant oscillations with overshoot and negative values in the boundary layers.The relationship between the number of poles in the wall heat flux and the number of zero-crossing points is identified.The difference in the results of the prescribed wall temperature case and the prescribed wall heat flux case is analyzed.Results given in this paper provide a rare closed form analytical solution to the entire unsteady NS equations,which can be used as a benchmark problem for numerical code validation.  相似文献   
29.
30.
In this paper, we review some results over the last 10-15 years on elliptic and parabolic equations with discontinuous coefficients. We begin with an approach given by N. V. Krylov to parabolic equations in the whole space with $\rm{VMO}_x$ coefficients. We then discuss some subsequent development including elliptic and parabolic equations with coefficients which are allowed to be merely measurable in one or two space directions, weighted $L_p$estimates with Muckenhoupt ($A_p$) weights, non-local elliptic and parabolic equations, as well as fully nonlinear elliptic and parabolic equations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号